

http://www.spm.pt/olimpiadas

XXVII OPM - 2° Eliminatória - 14.01.2009 - Categoria B - 10°/12°

Cada questão vale 10 pontos

Sugestões para a resolução dos problemas

1. Pretende-se encontrar os interruptores que fazem a máquina do tempo recuar o viajante 2009-1500=509 anos.

Solução 1: Se o interruptor 10 ficasse desligado, o maior número de anos que se poderia recuar seria $2^7 + 2^5 + 2^3 + 2^1 = 170 < 509$. Portanto, o interruptor 10 deverá ser ligado, o que fará a máquina recuar $2^9 = 512$ anos.

Falta agora encontrar os interruptores que fazem a máquina do tempo avançar 512-509=3 anos. Como 3 é ímpar e o interruptor 1 é o único que altera o tempo um número ímpar de anos, então este interruptor deverá ser ligado, o que fará a máquina avançar $2^0=1$ ano.

Falta agora encontrar os interruptores que fazem a máquina do tempo avançar 3-1=2 anos. Como o interruptor 2 é o único que não altera o tempo um número de anos múltiplo de 4, então este interruptor deverá ser ligado, o que fará a máquina recuar $2^1=2$ anos.

Resta encontrar os interruptores que fazem a máquina do tempo avançar 2+2=4 anos, o que se consegue com o interruptor 3.

Portanto, para que a máquina faça recuar o tempo até ao ano 1500 devem ser ligados os interruptores 1,2,3 e 10.

Solução 2: A expressão de -509 na base $-2 \, \text{\'e} -509 = 1000000111$, ou seja,

$$-509 = (-2)^9 + (-2)^2 + (-2)^1 + (-2)^0.$$

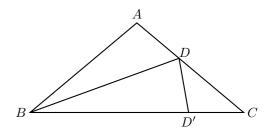
Portanto, para que a máquina faça recuar o tempo até ao ano $1500\,$ devem ser ligados os interruptores $1,2,3\,$ e $10.\,$

2. Como k divide $12^{12} = 2^{24}3^{12}$, então $k = 2^a 3^b$, com $0 \le a \le 24$ e $0 \le b \le 12$. Ora,

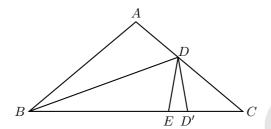
Logo, $\operatorname{mmc}(6^6, 8^8, k) = 2^{24}3^{12}$ se e só se $\operatorname{max}(24, a) = 24$ e $\operatorname{max}(6, b) = 12$, ou seja, $0 \le a \le 24$ e b = 12. Portanto há 25 soluções para o problema, que são os naturais $k = 2^a 3^{12}$, $\operatorname{com} 0 \le a \le 24$.

3. Em primeiro lugar note-se que $C\hat{A}B=180^{\circ}-40^{\circ}-40^{\circ}=100^{\circ}$. De seguida considere-se o ponto D' pertencente a [CB] tal que $\overline{BD'}=\overline{BD}$.

Uma vez que BD é a bissectriz do ângulo $\angle ABC$ e a amplitude deste ângulo é 40° , tem-se $D\hat{B}D'=20^\circ$. Além disso, [DBD'] é um triângulo isósceles, logo $D'\hat{D}B=B\hat{D}'D=80^\circ$. Assim, $D\hat{D}'C=100^\circ$ e, consequentemente, $D'\hat{D}C=40^\circ$. Deste modo, o triângulo [D'DC] é isósceles, logo $\overline{CD'}=\overline{DD'}$. Uma vez que $\overline{BC}=\overline{BD'}+\overline{D'C}=\overline{BD}+\overline{DD'}$, resta provar que $\overline{DD'}=\overline{DA}$.



Solução 1: Considere-se o ponto E tal que $B\hat{E}D=100^{\circ}$.



Observe-se que os triângulos [ABD] e [EBD] são congruentes, logo $\overline{DE} = \overline{DA}$. Por outro lado, $D\hat{E}D' = 180^{\circ} - B\hat{E}D = 80^{\circ} = E\hat{D'}D$, logo o triângulo [DED'] é isósceles e $\overline{D'D} = \overline{DE}$. Assim, $\overline{DD'} = \overline{DA}$.

Solução 2: Como $D\hat{A}B + B\hat{D}'D = 180^\circ$, conclui-se que o quadrilátero [ABD'D] é cíclico, ou seja, está inscrito numa circunferência. Assim, [DA] e [DD'] são cordas desta circunferência, definidas por ângulos inscritos com a mesma amplitude, por isso têm igual comprimento. Portanto, $\overline{DD'} = \overline{DA}$.

4. Se a_5 só tem um algarismo, então $a_6=2a_5+1>a_5$; se a_5 tem $m\geq 3$ algarismos, então $a_6\leq 2\times 9m+1<10^{m-1}\leq a_5$. Como $a_5=a_6$, então a_5 tem dois algarismos. Seja $a_5=10a+b$, com $0\leq a,b\leq 9$. Então, $a_6=2(a+b)+1$ e, como $a_5=a_6$ tem-se 8a=b+1, o que implica que a=1 e b=7. Portanto $a_5=17$ e $a_4\neq 17$.

Considerando todas as sucessões (a_n) nas condições do enunciado, sejam t < u dois valores possíveis para o termo a_{k+1} . Sejam ainda r o menor valor para a_k tal que $a_{k+1} = t$ e s o menor valor para a_k tal que $a_{k+1} = u$. Como t < u, então a soma R dos algarismos de r é menor do que a soma S dos algarismos de s. Substituindo os algarismos de s por outros menores ou iguais pode-se encontrar um número com soma de algarismos R, logo r < s. Assim, nas condições do enunciado, se a_1 for o menor possível, então também a_2 , a_3 , a_4 são os menores possíveis.

Para obter $a_5=17$, o termo a_4 pode ser qualquer número ímpar (diferente de 17) cuja soma dos algarismos é 8. O menor destes números é 35.

Para obter $a_4=35$, o termo a_3 pode ser qualquer número ímpar cuja soma dos algarismos é 17. O menor destes números é 89.

Para obter $a_3=89$, o termo a_2 pode ser qualquer número ímpar cuja soma dos algarismos é 44. O menor destes números é 89999.

Para obter $a_2=89999$, o termo a_1 pode ser qualquer número cuja soma dos algarismos é 44999. O menor destes números é $899\cdots 99$ (com 4999 algarismos 9).

Portanto o menor valor positivo para $a_1
in 899 \cdots 99$.

4999 algarismos